Multicollinearity and correlation among local regression coefficients in geographically weighted regression
نویسندگان
چکیده
Present methodological research on geographically weighted regression (GWR) focuses primarily on extensions of the basic GWR model, while ignoring well-established diagnostics tests commonly used in standard global regression analysis. This paper investigates multicollinearity issues surrounding the local GWR coefficients at a single location and the overall correlation between GWR coefficients associated with two different exogenous variables. Results indicate that the local regression coefficients are potentially collinear even if the underlying exogenous variables in the data generating process are uncorrelated. Based on these findings, applied GWR research should practice caution in substantively interpreting the spatial patterns of local GWR coefficients. An empirical disease-mapping example is used to motivate the GWR multicollinearity problem. Controlled experiments are performed to systematically explore coefficient dependency issues in GWR. These experiments specify global models that use eigenvectors from a spatial link matrix as exogenous variables. This study was supported by grant number 1 R1 CA95982-01, Geographic-Based Research in Cancer Control and Epidermiology, from the National Cancer Institute. The author thank the anonymous reviewers and the editor for their helpful comments. D. Wheeler (&) Department of Geography, The Ohio State University, 1036 Derby Hall, Columbus, OH 43210, USA E-mail: [email protected] M. Tiefelsdorf School of Social Sciences, University of Texas at Dallas, Richardson, TX 75083, USA E-mail: [email protected] J Geograph Syst (2005) 7: 161–187 DOI: 10.1007/s10109-005-0155-6
منابع مشابه
Multicollinearity in geographically weighted regression coefficients: Results from a new simulation experiment
Multicollinearities among the coefficients obtained from the method of geographically weighted regression have been identified in recent research. This is a serious issue that poses a critical challenge for the utility of the method as a tool to investigate multivariate relationships. The evidence regarding the ability of GWR to retrieve spatially varying processes remains mixed due to partial ...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملModeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملComparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea
In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...
متن کاملComments on Statistical Issues in January 2015
In this section, we address the problem of multicollinearity in multiple regression analysisthat appeared in the article titled, " Correlation between frailty and cognitive function in non-demented community dwelling older Koreans, " published in November 2014 by Kim et al. This is one of the most frequent comments made about articles usingmultiple regression analysis. Multicollinearity indicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Geographical Systems
دوره 7 شماره
صفحات -
تاریخ انتشار 2005